World
A study led by researchers at the University of Córdoba analyzed 185 isolates of the Colletotrichum fungus, which causes anthracnose in olive fruit, with samples collected from various countries. The research found differences in sensitivity to fungicides between species, highlighting the need for more effective control methods to combat the devastating economic impact of the disease.
A team led by researchers at the University of Córdoba’s department of agronomy has published one of the most comprehensive studies to date into Colletotrichum, the fungus which causes anthracnose, or “soapy olive.”
Anthracnose in olive fruit is highly virulent and can cause crop losses of up to 100 percent. In addition, a toxin produced within the rotten fruit can weaken the trees themselves by causing the dieback of branches, thereby reducing future yields even after successful treatment. In Spain, the disease is responsible for an average annual crop loss of 2.6 percent.
In the case of Colletotrichum, morphological characteristics do not allow us to differentiate between different species, so we must resort to DNA sequences that tell us how similar some isolates are to others- Juan Moral, researcher, University of Córdoba
In the study, a total of 185 isolates collected over a period of more than two decades were analyzed. Samples were taken primarily from Spain and Portugal, which are two of the world’s largest olive oil-producing countries. However, many other samples were collected from Australia, Brazil, California, Greece, Italy, Tunisia and Uruguay.
See Also:Olive Oil Research NewsWhile much prior research exists, molecular identification of isolates had not previously been carried out.
“In the case of Colletotrichum, morphological characteristics do not allow us to differentiate between different species, so we must resort to DNA sequences that tell us how similar some isolates are to others,” said Juan Moral, one of the leading researchers.
After using seven specific gene regions, 12 distinct species of Colletotrichum were identified.
Samples from other susceptible crops such as almonds, sweet oranges and strawberries, also were included in the study, and the fungus was found to be highly adaptable and opportunistic.
Isolates from Australian olive samples showed the highest Colletotrichum diversity by far, but with the two species dominant in Spain, Portugal, Greece and Italy being entirely absent. This adds weight to the hypothesis that native Colletotrichum species are able to rapidly jump to new hosts.
This ability of the fungus has practical implications for the prevention of the disease, as demonstrated by a case of cross-contamination at a nursery in northeastern Spain where citrus plants hosting the species C. fructicola are suspected to have infected olive plants which then showed necrosis of the leaves, a rare but potentially deadly symptom of anthracnose.
Given the pathogen’s devastating economic impact, various species were subjected to both benomyl and copper-based fungicides to determine their sensitivity and resistance.
“We have seen differences in sensitivity to fungicides between species and when we inoculated different varieties we also found differences in virulence between these isolates,” said Antonio Trapero, a University of Córdoba researcher.
Copper-based fungicides have become one of the most commonly used in recent years, due in part to their lower costs. However, results vary widely.
For example, the team observed that while the Spanish C. godetiae isolates from olive-growing regions where copper-based fungicides are frequently used by farmers were more tolerant to copper than C. nymphaeae isolates, samples from Portugal showed the opposite results.
“Having isolates from many countries shows how even isolates of the same species behave differently depending on the geographical area they come from,” researcher Carlos Agustí said.
The University of Córdoba said exploring the biology and biodiversity of anthracnose-causing pathogens in such depth should help advance the creation of more effective control methods.
The Spanish and Andalusian governments share this goal and both provided significant funding for the research.
More articles on: olive farming, olive oil research, pesticides
Oct. 31, 2024
Producers in Portugal Anticipate Another Bumper Harvest
Production could reach 190,000 tons after a wet winter replenished aquifers. However, labor remains a challenge for some growers.
Sep. 16, 2024
California Table Olive Yield Projected to Increase for Second Consecutive Year
California's table olive production is set to rise to 40,000 tons in 2024 due to favorable weather, despite ongoing challenges like labor shortages and competition from imports.
Jul. 20, 2024
Award-Winning Producer Promotes Rhodes as An Olive Oil Destination
Greece’s fourth-largest island is a well-known tourist destination. Consistently winning quality awards is helping Natura Rodos raise its profile as an olive oil producer.
Sep. 23, 2024
Light Harvest in Argentina Accompanied by Rising Production Costs
Olive oil production in Argentina is expected to be less than one-third of last year’s record yield. At the same time, electricity and fuel prices have risen dramatically.
Jul. 29, 2024
Researchers Introduce AI Tool to Help Olive Farmers Predict Harvest Timing
Using machine learning to analyze a range of data points from model farms, researchers were able to predict the timing of the olive harvest with 90 percent accuracy.
Sep. 12, 2024
Low-Carb Mediterranean Diet Aids Diabetes Patients in Achieving Remission
A review found that a low-carbohydrate Mediterranean diet was more effective in helping type 2 diabetes patients achieve remission compared to a low-fat or traditional Mediterranean diet.
Jun. 25, 2025
Olive Architecture: A New Branch of Grove Management
A new study analyzes the architectural characteristics of olive trees to inform key decisions about cultivar selection, orchard layout, pruning and harvest.
Jun. 28, 2025
Family's Love for Italian Cultivar Shapes Generations of Success
The Carroccia family-run olive farm in central Italy produces a celebrated Itrana monovarietal, rooted in love for the unique cultivar and its connection to the 'village of longevity.'